Appendix 1

Nine options were modelled using Ricardo Energy \& Environment's in-house collections model

- Option 0 - Baseline service in April 2016
- Option 1 - Weekly Two-stream (glass out) fortnightly residual
- Option 2 - Weekly Three-stream (glass and paper out) fortnightly residual
- Option 3 - Weekly commingled fortnightly residual waste
- Option 4 - Fortnightly two-stream (glass out) weekly residual, no food waste
- Option 5 - Fortnightly three-stream (glass and paper out) weekly residual, no food waste
- Option 6 - Fortnightly fully commingled weekly residual waste, no food waste
- Option 7 - Fully commingled AWC
- Option 7a - Fully commingled AWC, glass out
- Option 8 - Fully commingled AWC, no food waste

Appendix 2-Options were rated for projected dry recycling rate change based on residual waste capacity and the complexity of the collection svstem

Option	Option description	Weekly available capacity	Number of dry recycling containers	Total containers including residual and food	Rating for projected dry recyclate yield	Justification
Opt 0	Current service	Sacks	4	6	N/A	Baseline performance
Opt 1	Weekly Two-stream (glass out) fortnightly residual	1201	2	4	Large increase	Option 1 would constrain weekly available residual waste capacity to 1201 (240l wheelie bin collected fortnightly) and would reduce the number of dry recycling containers from 4 to 2.
Opt 2	Weekly Three-stream (glass and paper out) fortnightly residual	1201	3	5	Moderate increase	Option 2 would constrain weekly available residual waste capacity to 1201 (240I wheelie bin collected fortnightly) and would reduce the number of dry recycling containers from 4 to 3.
Opt 3	Weekly commingled fortnightly residual waste	1201	1	3	Largest increase	Option 3 would constrain weekly available residual waste capacity to 120 I (2401 wheelie bin collected fortnightly) and would reduce the number of dry recycling containers from 4 to 1.
Opt 4	Fortnightly two-stream (glass out) weekly residual, no food waste	2401	2	3	Small increase	Option 4 would constrain weekly available residual waste capacity to 2401 (2401 wheelie bin collected weekly) and would reduce the number of dry recycling containers from 4 to 2.
Opt 5	Fortnightly three-stream (glass and paper out) weekly residual, no food waste	2401	3	4	Smallest increase	Option 5 would constrain weekly available residual waste capacity to 2401 (2401 wheelie bin collected weekly) and would reduce the number of dry recycling containers from 4 to 3 .
Opt 6	Fortnightly fully commingled weekly residual waste, no food waste	2401	1	2	Moderate increase	Option 6 would constrain weekly available residual waste capacity to 2401 (2401 wheelie bin collected weekly) and would reduce the number of dry recycling containers from 4 to 1 .
Opt 7	Fully commingled AWC	1201	1	3	Very large increase	Option 7 would constrain weekly available residual waste capacity to 120 I (2401 wheelie bin collected fortnightly) and would reduce the number of dry recycling containers from 4 to 1 .
Opt 7a	Fully commingled AWC, glass out	1201	2	4	Very large increase	Option 7a would constrain weekly available residual waste capacity to 1201 (2401 wheelie bin collected fortnightly) and would reduce the number of dry recycling containers from 4 to 2.
Opt 8	Fully commingled AWC, no food waste	1201	1	2	Very large increase	Option 8 would constrain weekly available residual waste capacity to 120 I (2401 wheelie bin collected fortnightly) and would reduce the number of dry recycling containers from 4 to 1 .

Appendix 3

Red/Amber/Green options appraisal based on modelling outputs

		Opt 0	Opt 1	Opt 2	Opt 3	Opt 4	Opt 5	Opt 6	Opt 7	Opt 7a	Opt 8
Ease of Use for resident											
Cost (numbers show Rank)		8	10	9	6	4	7	3	2	5	1
Modelled Potential Recycling Performance		27\%	34-41\%	33-38\%	36-42\%	23-27\%	23-25\%	24-29\%	36-42\%	35-41\%	28-34\%
Quality of Materials											
Ease of delivery for Council	Vehicles										
	MRF	Need miniMRF	Need a MRF for paper, card, cans \& plastic, bulking for glass	Need mini-MRF to sep plastic \& cans	Need MRF which takes fully co-mingled	Need a MRF for paper, card, cans \& plastic, bulking for glass	Need mini-MRF to sep plastic \& cans	Need MRF which takes fully co- mingled	Need MRF which takes fully co- mingled	Need a MRF for paper, card, cans \& plastic, bulking for glass	Need MRF which akes fully comingled
TEEP (considers dry recyclate)	Technical Practicability										
	Environmental Practicability (dry recycling rate)	18\%	24-32\%	23-27\%	27-33\%	21-25\%	21-22\%	22-27\%	27-32\%	26-32\%	27-33\%
	Economic Practicability (change in overall service cost)	0	2-15\%	-22% to 3\%	$\begin{gathered} -14 \% \text { to }- \\ 4 \% \end{gathered}$	$\begin{gathered} -23 \% \text { to }- \\ 7 \% \end{gathered}$	$\left\|\begin{array}{c} -19 \% \text { to }- \\ 2 \% \end{array}\right\|$	$\begin{array}{\|c} -18 \% \text { to }- \\ 8 \% \end{array}$	$\begin{gathered} -34 \% \text { to }- \\ 12 \% \end{gathered}$	$\left\|\begin{array}{c} -30 \% \text { to } \\ 6 \% \end{array}\right\|$	$\left\|\begin{array}{c} -42 \% \text { to }- \\ 16 \% \end{array}\right\|$

Appendix 4

Total service cost and recycling rate

